
Markov chains
Preface

John Lennon had a difficult relationship with his mother - Julia Lennon.

When their father, Alfred Lennon, left them, Julia began to look for a life partner and

began to pay less attention to John Lennon, which caused him psychological trauma.

The injury worsened when Julia Lennon was killed by a drunken police officer in a car

accident.

Lennon was helped by psychologist Artur Yanov with his "Primal Scream" therapy.

https://en.wikipedia.org/wiki/Primal_therapy

Artur Janov helped Steve Jobs with a similar problem.

He was an honest psychologist who treated the sick (and successfully) for more than 30 years,

and not even for 3 years,

and not even 3 months

but in three weeks.

And very cheap.

For the first 2 weeks, the patient recalled his grievances towards his mother and expressed them as best he

could.

Sometimes he cursed, called bad names.

And on the third week, Yanov explained to the patient that his mother could and injured him and was bad,

but this is already in the past.

And now the whole future depends only on him.

We just need to act, not looking back at the past.

Don't waste your time and energy on this.

And, as a mathematician, I will now try to prove the same to you with the help of an automaton called

Markov chains.

Maybe just like Janov

helped John Lennon and

Steve Jobs to

successfully fulfill

themselves, so today I

will help you to

successfully fulfill your

natural potential –

do you best!

This mechanism was used by Shannon for approximation.

 https://people.math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf

https://people.math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf

And we'll do it a little differently. This automaton, which has become so popular for modeling

various

processes,

arose as a

result of a

metaphy-

sical

philoso-

phical

dispute

about free

will

The fact is that, when observing the natural world, many of us notice a somewhat beautiful

dichotomy [daɪˈkɒtəmɪ].

No two things are ever exactly alike, but they all seem to follow some underlying form.

Plato believed that the true forms of the Universe were hidden from us (usual people).

Plato

(Greek: Πλάτων Plátōn;

428/427 or 424/423 – 348/347

BC)

https://en.wikipedia.org/wiki/Greek_language
https://en.wiktionary.org/wiki/%CE%A0%CE%BB%CE%AC%CF%84%CF%89%CE%BD

Through observation of the natural world, we could merely acquire approximate knowledge of

them.

They were hidden blueprints (pure forms).

 implementations

принц на белом коне (prince charming)

hidden blueprint

(pure form)

implementation

The pure forms were only accessible through abstract reasoning of philosophy and

mathematics.

Abstract reasoning

For example, the circle he describes

as that which has the distance

from its circumference

to its center everywhere equal.

Yet we will never find a material manifestation of a

perfect circle

This Platonic focus on abstract pure forms (hidden blueprints) remained popular for centuries.

It wasn't until the 16th century when people tried to embrace the messy

variation in the real world and apply mathematics to reveal underlying patterns.

Bernoulli refined the idea of expectation.

(1700 – 1782)

He was focused on

a method of

accurately

estimating

the unknown

probability of some

event based on the

number of times

the event occurs in independent trials.

He uses a simple example.

Suppose that without your knowledge, 3,000

light beens and 2,000 dark beens are hidden in

an urn,

and that to determine the ratio of white versus

black by experiment,

you draw one been after another, with

replacement, and note how many times a white

been is drawn versus black.

He went on to prove that the expected value of

white versus black observations will converge on

the actual ratio as the number of trials increases,

known as the weak law of large numbers.

He concluded by saying, "If observations "of all events be continued for the entire infinity , "it

will be noticed that everything in the world " is governed by precise ratios "and a constant law

of change."

This idea was quickly

extended as it was

noticed that not only

did things

converge on an

expected average,

but the probability of variation away from averages also follow a familiar, underlying shape, or

distribution.

A great example of this is Francis Galton's bean machine.

https://upload.wikimedia.org/wikipedia/commons/transcoded/d/dc/Galto

n_box.webm/Galton_box.webm.720p.vp9.webm

Imagine each collision as a single independent event, such as a coin flip.

https://upload.wikimedia.org/wikipedia/commons/transcoded/d/dc/Galton_box.webm/Galton_box.webm.720p.vp9.webm
https://upload.wikimedia.org/wikipedia/commons/transcoded/d/dc/Galton_box.webm/Galton_box.webm.720p.vp9.webm

After 10 collisions or events,

the bean falls into a bucket

representing the ratio of left

versus right deflection, or

heads versus tails.

After 10 collisions or events,

the component falls into a

basket representing ratio of

left and right deflection or

heads and tails.

This general curvature,

known as the binomial

distribution, seems to be

the ideal shape, as it

appears everywhere

whenever you look at the

variation of a large number

of random trials.

It seems the average fate of these events is somehow predetermined, known today as the

central limit theorem.

This was a dangerous philosophical idea to some.

Pavel Nekrasov, originally a theologian by training, later took up

mathematics and was a strong proponent of the doctrine of

free will.

He didn't like the idea of us having this predetermined

statistical fate.

He made a famous claim that independence is a necessary

condition for the law of large numbers,

since independence just describes these toy examples using

beans or dice, where the outcome of previous events doesn't

change the probability of the current or future events.

However, as we all can relate, most things in the physical world are clearly dependent on prior

outcomes, such as the chance of fire or sun or even our life expectancy.

When the probability of some event depends, or is conditional, on

previous events, we say they are dependent events, or dependent

variables.

This claim angered another Russian mathematician, Andrey

Markov, who maintained a very public animosit] towards

Nekrasov (Because of the writer Leo Tolstoy, who was then

excommunicated from the Orthodox Church - Markov, in

protest, asked him to be excommunicated too).

He goes on to say in a letter that "this circumstance

"prompts me to explain in a series of articles "that the law of

large numbers can apply "to dependent variables,"

using a construction which he brags, Nekrasov cannot even

dream about.

Markov extends Bernoulli's results to dependent variables

using an ingenious construction.

Imagine a coin flip which isn't independent, but dependent on the previous outcome, so it has

short-term memory of one event.

In one state we have a 60%-40% mix of light

versus dark beens

in the other state we have more dark versus

light beens.

One jar we can call state zero. Other jar we can call state one.

,

With this two-state machine, we can identify four possible transitions.

while

while in the other state we have more dark versus light.

If we are in state zero and a white occurs, we loop back to the same state and select again.

If a black bead is selected, we jump over to state one

If a dark been is selected, we jump over to

state one, which can also loop back on itself,

or jump back to state zero if a dark is chosen.

The probability of a light versus dark selection is clearly not independent here, since it depends

on the previous outcome.

But Markov proved that as long as every state in the machine is reachable, when you run these

machines in a sequence, they reach equilibrium.

 - 8 - 12

40% 60%

That is, no matter where you start, once you

begin the sequence, the number of times you

visit each state converges to some specific

ratio, or a probability.

That is, no matter where you start

(white or black jar) (what the unfavorable

conditions in your childhood no matter what

mistakes your parents make in upbringing (and

no matter what injuries your classmates inflict

on you)

the number of times (after 20-30 months of

study at the university), all converges to some

specific ratio.

Your Probability (chances of success) are the

same as your more successful peers [pɪə]

This simple example disproved Nekrasov's claim that only independent events could converge

on predictable distributions.

But the concept of modeling sequences of random events using states and transitions between

states became known as a Markov chain.

One of the first and most famous applications of Markov chains was published by Claude

Shannon.

1. Writing a console program

1.1. Create a Markov chain class

class MarkovChain

{

 internal int iJarA00; //50%

 internal int iJarA01; //50%

 internal int iJarB10; //20%

 internal int iJarB11; //80%

 public MarkovChain(int A00, int A01, int B10, int B11)

 {

 iJarA00 = A00; iJarA01 = A01;

 iJarB10 = B10; iJarB11 = B11;

 }

 static void Main(string[] args)

 {

 myMC = new MarkovChain(50, 50, 20, 80);

 Console.ReadLine();

}

1.2. Let's display the result of initialization of class MarkovChain

 Console.WriteLine(myMC.iJarA00 + "," + myMC.iJarA01);

 Console.WriteLine(myMC.iJarB10 + "," + myMC.iJarB11);

1.3. Let's divide the code into interface (input-output) and business logic

 static void Read()

 {

 myMC = new MarkovChain(50, 50, 20, 80);

 r = new Result();

 }

 static void Write()

 {

 Console.WriteLine(myMC.iJarA00 + "," + myMC.iJarA01);

 Console.WriteLine(myMC.iJarB10 + "," + myMC.iJarB11);

 }

 static void Main(string[] args)

 {

 Read();

 Write();

 Console.ReadLine();

 }

1.4. Let's write the Markov network operation method

MarkovChain.Run()

Let's create the Result class (for saving results)

class Result

{

 internal int white; //white - number of randomly selected whites beans for iSteps

 internal int black; //black- number of randomly selected whites beans for iSteps

 internal string s;

}

1.5. Let's supplement the data section of the class MarkovChain with new variables

(service)

internal int iSteps; - number of steps

internal Result res; - variable (field) for storing results

internal Random r; - object (instance) of the Random class for implementing random selection

int white; - number of white beans pulled per iSteps

int black; - number of black beans pulled per iSteps

jarNo = 1; //Jar number A-1 B-2

int p = -1; - random number from 1 to 100,

dropping out on a step i ∈[0, iSteps].

int i = -1; - step number i ∈[0, iSteps].

1.6. Let’s write the method JarA()

that determines whether the next choice will be made

from the white jug (A - returns one), or the transition to

the black jug will be made (B - returns 2)

 int JarA()

 {

 p = r.Next(1, 100);

 if (p < iJarA00) return 1;//iJarA00

 else return 2;

 }

1.7. Let’s write the method JarB()

that determines whether the next choice will be made

from the black jug (B - returns 2), or the transition to the

white jug will be made (B - returns 1)

 int JarB()

 {

 p = r.Next(1, 100);

 if (p < iJarB11) return 2; //iJarB11

 else return 1;

 }

1.8. Let’s write the method Run()

public Result Run()

{

i = 0;

jarNo = 1; //Jar A-1 B-2

white = 0;

black = 0;

string s = "";

while (true)

{

 i++;

 s += (jarNo - 1).ToString();

 if (jarNo == 1)

 {

 white++;

 jarNo = JarA();

 }

 else

 {

 black++;

 jarNo = JarB();

 }

 if (i >= iSteps) break;

}

}

 res.white = white;

 res.black = black;

 res.s = s;

 return res;

 }

1.9. Let’s change the method Write()

 static void Write()

 {

 Console.WriteLine(myMC.iJarA00 + "," + myMC.iJarA01);

 Console.WriteLine(myMC.iJarB10 + "," + myMC.iJarB11);

 Console.WriteLine("White=" + r.white);

 Console.WriteLine("Black=" + r.black);

 Console.WriteLine("s=" + r.s);

 }

1.10. Start Console Program

Draw a table 3x3 and insert the drawing in the center

<table>

 <tr>

 <td></td>

 <td></td>

 <td></td>

 </tr>

 <tr>

 <td></td>

 <td>

 </td>

 <td></td>

 </tr>

 <tr>

 <td></td>

 <td></td>

 <td></td>

 </tr>

 </table>

Insert textboxes
<table>

 <tr>

 <td></td>

 <td>

 <asp:TextBox ID="TextBoxJarA01" runat="server" Width="22px">50</asp:TextBox>%
 </td>

 <td></td>

 </tr>

 <tr>

 <td>

 <asp:TextBox ID="TextBoxJarA00" runat="server" Width="22px">50</asp:TextBox>%
 </td>

 <td>

 </td>

 <td>

 <asp:TextBox ID="TextBoxJarB11" runat="server" Width="22px">80</asp:TextBox>%
 </td>

 </tr>

 <tr>

 <td></td>

 <td>

 <asp:TextBox ID="TextBoxJarB10" runat="server" Width="22px">20</asp:TextBox>%
 </td>

 <td></td>

 </tr>

 </table>

We carry out code migration - from a console application to a WEB application

1. Business Logic - classes Result and MarkovChain – 1:1

Console Default.aspx.cs

class Result

{

 internal int white; //white

 internal int black; //black

 internal string s;

}

class MarkovChain

{

….

}

using System;

…….

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

class Result

{

……..

}

class MarkovChain

{

….

}

2. Method Read() – get values from textboxes

Console Default.aspx.cs

static void Read()

{

 myMC = new MarkovChain(50, 50, 20, 80, 1000);

 r = new Result();

}

public partial class Default2 : System.Web.UI.Page

{

 MarkovChain myMC;

 Result r;

 protected void Read()

 {

 int a00 = int.Parse(TextBoxJarA00.Text);

 int a01 = int.Parse(TextBoxJarA01.Text);

 int b10 = int.Parse(TextBoxJarB10.Text);

 int b11 = int.Parse(TextBoxJarB11.Text);

 int steps = int.Parse(TextBox_iSteps.Text);

 myMC = new MarkovChain(a00, a01, b10, b11, steps);

 r = new Result();

 }

3. Method Write() – put values to textboxes

Console Default.aspx.cs

 static void Write()

 {

 Console.WriteLine(myMC.iJarA00 + "," + myMC.iJarA01);

 Console.WriteLine(myMC.iJarB10 + "," + myMC.iJarB11);

 Console.WriteLine("White=" + r.white);

 Console.WriteLine("Black=" + r.black);

 Console.WriteLine("s=" + r.s);

 }

 protected void Write()

 {

 //Console.WriteLine(myMC.iJarA00 + "," + myMC.iJarA01);

 //Console.WriteLine(myMC.iJarB10 + "," + myMC.iJarB11);

 LabelWhite.Text = (r.white).ToString();

 LabelBlack.Text= (r.black).ToString();

 LabelS.Text="s=" + r.s;

 }

4. The code from the Main() method is placed in the method cmbRun_Click()

Console Default.aspx.cs

 static void Main(string[] args)

 {

 Read();

 r = myMC.Run();

 Write();

 Console.ReadLine();

 }

 protected void cmbRun_Click(object sender, EventArgs e)

 {

 Read();

 r = myMC.Run();

 Write();

 }

https://hwaet.bsite.net/Projects/5/Markov/

https://hwaet.bsite.net/Projects/5/Markov/

